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Abstract. It is shown that for a large class of potential problems in the Dirac 

equation the positive and negative energy solutions do not mix even in the strong 

coupling limit. We prove that this property, which implies a stability of the Dirac 

sea, is connected to the presence of superalgebra operators in the Dirac equation. 

The exact and closed form for the Foldy-Wouthuysen hamiltonian which is used to 

prove this property is given. The potentials include the Dirac oscillator and the odd 

potentials and its non-abelian generalizations. 
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In a recent work [I] it has been shown that a physical interpretation of the Dirac 

oscillator equation [2] can be readily obtained when a Foldy-Wouthuysen [3] transfor- 

mation is performed for this equation. One remarkable outcome of this procedure is 

that, regardless of the intensity of the coupling, the Dirac oscillator potential does not 

mix the positive and negative energy states. Therefore, the definition of the vacuum 

state of this theory can be maintained when one switches the interaction on. 

In this work we show that this property, which will be referred to as the stability 

of the Dirac sea, is shared by a large class of interactions. Futhermore, we show that 

after defining a generalization of supersymmetry for potential problems in the Dirac 

theory, this stability is the result of a custodial supersymmetry. 

The Dirac oscillator is simply a Dirac equation in which the interaction with an 

external potential is introduced non-minimally with the substitution 

p-p-iimwpr, (1) 

where m is the particle mass and w is the oscillator frequency; our conventions follow 

those of Ref. [4]. The resulting equation can be cast into a form that shows its 

covariance and in which the physical meaning of the potential is transparent [l] , 

(i? - m + R&~‘F~)S’ = o, 

where n = 2m’w/e is an anomalous (chrome) magnetic moment. The external 

(chrome) electric, field from which the interaction in Eq. 1 might stem, can be 

given in terms of an explicit reference frame. Physically this is the frame in which 

the charge distribution is at rest. Defining this frame in terms of the velocity four 
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vector u of its origin, the field from which the Dirac oscillator arises is given by 

FW = ufi+” - TyzI’. (3) 

Let us consider a Dirac particle in a purely odd time independent external po- 

tential. Except for these requirements the interaction is quite general, in particular 

the potential can have internal (color-like) degrees of freedom. The Dirac equation 

hamiltonian for this system is: 

H=a*7r+767r~++, (4) 

where 

~i=p;+A;(z)+iPE;(~), i= 1,2,3,5; (5) 

and Ps := 0. These potentials can be classified by their Lorentz properties as follows: 

1. E6 is a pseudoscalar potential. 

2. AS is a timelike part of an axial-vector potential. 

3. E is the (chrome) electric field part of an anomalous magnetic moment inter- 

action. 

4. A is a minimal (chrome) magnetic interaction. 

Let us study a Foldy-Wouthuysen transformation with generator 

iS = pose 

= ~(CX - T + 7sTs)e 

= (Y. = +P7s+4 (6) 
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where 0~ is the odd part of the hamiltonian. The existence of a closed and simple 

canonical transformation, that decouples large from small components, depends on 

whether or not one can obtain an operator .4 which commutes with p and OH. If such 

0 exists then the Foldy-Wouthuysen transformation is given by 

eis = cos(h6) + a - rrh-I sin( 

with h an even root of 0%. 

Now, with the assumed e properties it follows that 

{is, H} = 0; 

and therefore the transformed Foldy-Wouthuysen hamiltonian is simply 

HFw = a . x(cos(2he) - F sin(2hB)) + p(mcos(2he) + hsin(2he)), 

with the selection 

tan(2hO) = L, 

(7) 

(8) 

(9) 

(10) 

the transformed Foldy-Wouthuysen hamiltonian will be purely even. If one selects 

instead 

cot(2he) = -;, (11) 

a Cini-Touschek [5] form will be gotten. Any of this two conditions for 6’ imply 

e = e(hy, (12) 

and are consistent with the required commutation conditions. The form of the re- 

sulting hamiltonian is 

HFW = pw, (13) 
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which confirms the claim that the hamiltonian does not mix the positive and negative 

energy states. An explicit solution for h, a square root of h’, is HFW with the mass 

term set equal to zero. The hamiltonian in Eq. 13 can be obtained explicitly in terms 

of 

hz=,t.rr+~5~~+[rrSrr+rrt~-,+;,txrr].~, 

the different terms in this formula can be expanded according to 

(14) 

?rt .7r = (p+A)‘+Ea+pV.~+i~~i~~,~,l, 
j=l 

&s = A: + E: + @[AS,E~], 

dw + +% = {p + A, As} + {E, ,I&} + 

P((VEs) + i[A, Es] - ~[As, E]), 

ztxz = -i(VxA)+AxA+ExE+ 

(15) 

(16) 

(17) 

08) 

iP(pxE-Exp+AxE-ExA). 

Our result reduces in different limits to the special cases treated by Eriksen [6]. In 

particular, because we have not used the commutation properties of the potentials, all 

expressions can also be applied to non-abelian theories. The Dirac oscillator potential 

corresponds to the case Ag = Es = 0, A = 0 and E = r. 

We remark two general features of this results. First, the Foldy-Wouthuysen 

hamiltonian reduces to the free particle hamiltonian in the zero coupling limit in a 

way that never mixes positive and negative energy states. Second, the energy gap 

between positive and negative energy states has a minimum value of 2m when the 

potentials are turned on. These are straightforward consequences of the form of the 
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Foldy-Wouthuysen hamiltonian in Eq. 13. 

We will now show how this class of Dirac equations is closely related to a SchrGdiger 

supersymmetric quantum mechanical problem. A Schrsdinger equation is said to be 

supersymmetirc if the hamiltonian of the problem has the form [7,8,9]: 

Hs = {Q, Q’), (19) 

where the operators Q and Qt are fermionic, i.e., 

Q’ zz 0 = Qt2; (201 

this implies that [Q, Hs] = 0 = [Qt,Hs] and therefore QQt and QtQ are good 

quantum numbers The energy eigenstates In >, ITZ+ >= Qtln > and In- >= Qln > 

are degenerate (but either /n+ > or In- > vanish). 

We now study a Dirac hamiltonian operator of the form 

H=Q+Q’+X, (21) 

with X hermitian and such that 

{Q,Xl = {Q’, Xl = 0; (22) 

this condition guarantees that QQt and QtQ commute with H and are also good 

quantum numbers for the Dirac equation in formula 21. Then we have 

H2 = (Q, Q’} + X2. (23) 

We can now construct a Foldy-Wouthuysen transformation for this supersymmetric 
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problem; the unitary transformation is generated by 

iS = X(Q + Q’)B; (24) 

with a Foldy-Wouthuysen hamiltonian 

H FW = $m. (25) 

The Dirac oscillator [1,2] and Eriksen [6] are all special cases of this framework with 

x = pm, (2’4 

(27) 

Q’ = (28) 

where the standard representation for the Dirac matrices was used, M is a quaternion 

of the form 

M = u. (p + C) + Cs; (29) 

and the C; are arbitrary complex potentials. The relation of the Ci to the A; and E; 

is 

C< = Ai + iE;. (30) 

In this work we analyzed the origin of the stability of the Dirac sea for a large 

class of potentials in Dirac equation, these potentials include the recently discovered 

Dirac oscillator [2] as well as the more general class of odd potentials first found by 

Eriksen [6]. The stability of the Dirac sea was proved using the existence of a Foldy- 

Wouthuysen transformation which we have explicitly constructed. The origin of this 
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property was shown to be related to the way in which the Dirac equation is constructed 

out of superalgebra operators. This in turn lead to a generalization of the class of 

Dirac equations for which an exact and closed Foldy-Wouthuysen transformation can 

be obtained. Let us finally mention that further generalizations of the procedure 

presented in this work require a careful treatment. This is particularly certain for the 

time independence requirement and its connection with the unitarity of the Foldy- 

Wouthuysen transformation [10,11,12,13]. 

We would like to thank M. Torres for discussions on the subject of this work. One 

of us (M. M.) would also like to thank the hospitality he has received from Fermilab. 

References 

[l] M. Moreno and A. Zentella, Jour. of Physics A: Math. Gem 22, L821 (1989) 

[2] M. Moshinsky and A. Saczepaniak, Jour. of Physics A: Math. Gen. 22, LB17 

(1989) 

[3] L. Foldy and S. Wouthuysen, Phys. Rev. 78, 29 (1950). 

[4] J. Bjorken and S. Drell, Relativistic Quantum Mechanics, MC Graw-Hill, New 

York (1964). 

[5] M. Cini and T. Touschek, Nuovo Cimento 7, 422 (1958). 

[6] E. Eriksen, Phys. Rev. 111, 1011 (1958). 

[7] C.A. Blockley and G. E. Stedman, Eur. J. Phys. 6, 218 (1985). 



-8- FERMILAB-Pub-89/248-T 

[8] G. E. Stedmaa, Eur. J. Phys. 6, 225 (1985). 

[9] L.F. Urrutia and E. Hernindez, Phys. Rev. Lett. 51, 755 (1983). 

[lo] M.M. Nieto, Phys. Rev. Lett. 38, 1042 (1977). 

[ll] T. Goldman, Phys. Rev. D15, 1063 (1977). 

[12] J. Kupersztych, Phys. Rev. Lett. 42, 483 (1979). 

[13] L. Holster, J. Math. Phys. 30, 1621 (1989). 


